News Story: Full Text
Sponsored By
Orbus Therapeutics Inc Clinical Trial for Recurrent Anaplastic Astrocytomas
Please Click On The Above Banner For More Details
Braintumor Website

 

A novel, reproducible, and objective method for volumetric magnetic resonance imaging assessment of enhancing glioblastoma.

Al's Comment:

 This is one of the most important articles of the year. One of the main problems that slows down drug development for GBMs is the inability to agree on tumor response or progression.  If this method is proven to work, it can drastically speed up the search for the cure.


Posted on: 08/17/2014

J Neurosurg. 2014 Jul 18:1-7. [Epub ahead of print]
A novel, reproducible, and objective method for volumetric magnetic resonance imaging assessment of enhancing glioblastoma.
Kanaly CW1, Mehta AI, Ding D, Hoang JK, Kranz PG, Herndon JE 2nd, Coan A, Crocker I, Waller AF, Friedman AH, Reardon DA, Sampson JH.
Author information: 
1Division of Neurosurgery, Department of Surgery.
 
Abstract
Object Robust methodology that allows objective, automated, and observer-independent measurements of brain tumor volume, especially after resection, is lacking. Thus, determination of tumor response and progression in neurooncology is unreliable. The objective of this study was to determine if a semi-automated volumetric method for quantifying enhancing tissue would perform with high reproducibility and low interobserver variability. Methods Fifty-seven MR images from 13 patients with glioblastoma were assessed using our method, by 2 neuroradiologists, 1 neurosurgeon, 1 neurosurgical resident, 1 nurse practitioner, and 1 medical student. The 2 neuroradiologists also performed traditional 1-dimensional (1D) and 2-dimensional (2D) measurements. Intraclass correlation coefficients (ICCs) assessed interobserver variability between measurements. Radiological response was determined using Response Evaluation Criteria In Solid Tumors (RECIST) guidelines and Macdonald criteria. Kappa statistics described interobserver variability of volumetric radiological response determinations. Results There was strong agreement for 1D (RECIST) and 2D (Macdonald) measurements between neuroradiologists (ICC = 0.42 and 0.61, respectively), but the agreement using the authors' novel automated approach was significantly stronger (ICC = 0.97). The volumetric method had the strongest agreement with regard to radiological response (κ = 0.96) when compared with 2D (κ = 0.54) or 1D (κ = 0.46) methods. Despite diverse levels of experience of the users of the volumetric method, measurements using the volumetric program remained remarkably consistent in all users (0.94). Conclusions Interobserver variability using this new semi-automated method is less than the variability with traditional methods of tumor measurement. This new method is objective, quick, and highly reproducible among operators with varying levels of expertise. This approach should be further evaluated as a potential standard for response assessment based on contrast enhancement in brain tumors.
 
 PMID: 25036205 [PubMed - as supplied by publisher] 
 

 


Click HERE to return to brain tumor news headlines


Home | Brain Tumor Guide | FAQs | Find A Treatment
Noteworthy Treatments | News | Virtual Trial | Videos | Novocure Optune® | Newsletter
Donations | Brain Tumor Centers | Survivor Stories | Temodar®
Fundraising For Research | Unsubscribe | Contact Us

Copyright (c) 1993 - 2018 by:
The Musella Foundation For Brain Tumor Research & Information, Inc
1100 Peninsula Blvd
Hewlett, NY 11557
888-295-4740