News Story: Full Text
Sponsored By
Cedars-Siani Medical Center Brain Tumor Program
Please Click On The Above Banner For More Details
Braintumor Website

 

A feasibility study of 18F-fluorodeoxyglucose positron emission tomography targeting and simultaneous integrated boost for intensity-modulated radiosurgery and radiotherapy.


Posted on: 12/20/2004

A feasibility study of 18F-fluorodeoxyglucose positron emission tomography targeting and simultaneous integrated boost for intensity-modulated radiosurgery and radiotherapy.

J Neurosurg. 2004 Nov;101 Suppl 3:381-9.

Solberg TD, Agazaryan N, Goss BW, Dahlbom M, Lee SP.

Department of Radiation Oncology, David Geffen School of Medicine, University of California, 90095-6951, USA. solberg@radonc.ucla.edu

OBJECT: The authors hypothesized that the efficacy of intensity-modulated radiation therapy (IMRT) can be enhanced by selectively increasing the radiation dose to the biologically active positron emission tomography (PET)-documented positive tumor subregions while simultaneously maintaining the overall clinically established target dose.

METHODS: The authors undertook a feasibility study to evaluate IMRT PET/computerized tomography (CT) protocol for boost treatment in selected cancer patients. Prior to treatment, FDG-PET and CT scans were acquired using an integrated PET/CT scanner, ensuring accurate correlation between image sets. After acquisition, tumor volume and objects-at-risk (OARs) were outlined on the CT scans; any PET-positive tumor subregions were similarly outlined. Daily dosages of 1.8 to 2 Gy were prescribed to tumor volume and the margin whereas additional dosages of 10 to 20% were delivered to PET-positive subregions. Dosage-volume histogram-derived constraints were used in inverse planning to specify the desired dose to one or more PET-positive tumor subregions, CT-delineated tumor volume, and OARs. The IMRT treatment was delivered using a micromultileaf collimator. Simultaneous integrated boost radiation was successfully delivered using IMRT with PET/CT planning. Excellent dose conformality was achieved in the tumor volume and the dose to PET-positive tumor subregions was increased while minimizing the dose to OARs.



CONCLUSIONS: When coupled with IMRT, PET/CT scanning allows dose escalation to biologically active subregions within the tumor volume. Further study is needed to determine if dose escalation to FDG-PET-active sites correlates with improved treatment outcome. Finally, in extracranial sites, PET scanning should only be performed with a dedicated PET/CT device because present image fusion technologies are inadequate for accurately registering deformable objects.



Publication Types: Clinical Trial

PMID: 15537193 [PubMed - indexed for MEDLINE]


Click HERE to return to brain tumor news headlines


Home | Brain Tumor Guide | FAQs | Find A Treatment
Noteworthy Treatments | News | Virtual Trial | Videos | Novocure Optune® | Newsletter
Donations | Brain Tumor Centers | Survivor Stories | Temodar®
Fundraising For Research | Unsubscribe | Contact Us

Copyright (c) 1993 - 2019 by:
The Musella Foundation For Brain Tumor Research & Information, Inc
1100 Peninsula Blvd
Hewlett, NY 11557
888-295-4740