News Story: Full Text
Sponsored By
Cedars-Sinai Medical Center Brain Tumor Program
Please Click On The Above Banner For More Details
Braintumor Website

Expression and activation of signal regulatory protein alpha on astrocytomas.

Al Musella's Comments: (This is his personal views and are not necessarily the views of the Musella Foundation!)


Posted on: 04/07/2004

Expression and activation of signal regulatory protein alpha on astrocytomas.

Cancer Res. 2004 Jan 1;64(1):117-27.
Chen TT, Brown EJ, Huang EJ, Seaman WE.

Departments of Immunology and Pathology, San Francisco VA Medical Center, San Francisco, California 94121, USA.

High-grade astrocytomas and glioblastomas are usually unresectable because they extensively invade surrounding brain tissue. Here, we report the expression and function of a receptor on many astrocytomas that may alter both the proliferative and invasive potential of these tumors. Signal regulatory protein (SIRP) alpha1 is an immunoglobulin superfamily transmembrane glycoprotein that is normally expressed in subsets of myeloid and neuronal cells. Transfection of many cell types with SIRPalpha1, including glioblastomas, has been shown to inhibit their proliferation in response to a range of growth factors. Furthermore, the expression of a murine SIRPalpha1 mutant has been shown to enhance cell adhesion and initial cell spreading but to inhibit cell extension and movement. The extracellular portion of SIRPalpha1 binds CD47 (integrin-associated protein), although this interaction is not required for integrin-mediated activation of SIRPalpha1. On phosphorylation, SIRPalpha1 recruits the tyrosine phosphatases SHP-1 and SHP-2, which are important in its functions. Although SHP-1 is uniquely expressed on hematopoietic cells, SHP-2 is ubiquitously expressed, so that SIRPalpha1 has the potential to function in many cell types, including astrocytomas. Because SIRPalpha1 regulates cell functions that may contribute to the malignancy of these tumors, we examined the expression of SIRPs in astrocytoma cell lines by flow cytometry using a monoclonal antibody against all SIRPs. Screening of nine cell lines revealed clear cell surface expression of SIRPs on five cell lines, whereas Northern blotting for SIRPalpha transcripts showed mRNA present in eight of nine cell lines. All nine cell lines expressed the ligand for SIRPalpha1, CD47. To further examine the expression and function of SIRPs, we studied the SF126 and U373MG astrocytoma cell lines, both of which express SIRPs, in greater detail. SIRP transcripts in these cells are identical in sequence to SIRPalpha1. The expressed deglycosylated protein is the same size as SIRPalpha1, but in the astrocytoma cells, it is underglycosylated compared with SIRPalpha1 produced in transfected Chinese hamster ovary cells. It is nonetheless still capable of binding soluble CD47. Moreover, SIRPalpha1 in each of the two cell lines recruited SHP-2 on phosphorylation, and SIRPalpha1 phosphorylation in cultured cells is CD47 dependent. Finally, examination of frozen sections from 10 primary brain tumor biopsies by immunohistochemistry revealed expression of SIRPs on seven of the specimens, some of which expressed high levels of SIRPs. Most of the tumors also expressed CD47. This is the first demonstration that astrocytomas can express SIRPalpha. Given the known role of SIRPalpha in regulating cell adhesion and responses to mitogenic growth factors, the expression of SIRPalpha1 on astrocytomas may be of considerable importance in brain tumor biology, and it offers the potential of a new avenue for therapeutic intervention.

PMID: 14729615 [PubMed - indexed for MEDLINE]

Click HERE to return to brain tumor news headlines

Home | Brain Tumor Guide | FAQs | Find A Treatment
Noteworthy Treatments | News | Virtual Trial | Videos | Novocure Optune® | Newsletter
Donations | Brain Tumor Centers | Survivor Stories | Temodar®
Fundraising For Research | Unsubscribe | Contact Us

Copyright (c) 1993 - 2020 by:
The Musella Foundation For Brain Tumor Research & Information, Inc
1100 Peninsula Blvd
Hewlett, NY 11557